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As a model of composite materials, we choose a bundle of fibers with stochastically distributed breaking
thresholds for the individual fibers. The fibers are assumed to share the load equally, and to obey Hookean
elasticity right up to the breaking point. We study the evolution of the fiber breaking rate at a constant load in
excess of the critical load. The analysis shows that the breaking rate reaches a minimum when the system is
half-way from its complete collapse.
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I. INTRODUCTION

Bundles of fibers, with statistical distributed thresholds
for the breakdown of individual fibers, present interesting
models of failures in materials. They have simple geometry
and clear-cut rules for how stress caused by a failed element
is redistributed on undamaged fibers. Since these models can
be analyzed to an extent that is not possible for more com-
plex materials, they have been much studied �For reviews,
see �1–5��. The statistical distribution of the size of ava-
lanches in fiber bundles is well studied �6–8�, and the failure
dynamics under constant load has been formulated �9�
through recursion relations which in turn explore the phase
transitions and associated critical behavior in these models.

In this paper we present a way to predict when an over-
loaded bundle collapses, by monitoring the fiber breaking
rate. We focus on the equal-load-sharing models, in which
the load previously carried by a failed fiber is shared equally
by all the remaining intact fibers �10–13�. We consider a
bundle consisting of a large number N of elastic fibers,
clamped at both ends �Fig. 1�. The fibers obey Hooke’s law
with force constant set to unity for simplicity. Each fiber i is
associated with a breakdown threshold xi for its elongation.
When the length exceeds xi the fiber breaks immediately, and
does not contribute to the strength of the bundle thereafter.
The individual thresholds xi are assumed to be independent
random variables with the same cumulative distribution
function P�x� and a corresponding density function p�x� as
follows:

Prob�xi � x� = P�x� = �
0

x

p�y�dy . �1�

If an external load F is applied to a fiber bundle, the resulting
failure events can be seen as a sequential process �9�. In the
first step all fibers that cannot withstand the applied load
break. Then the stress is redistributed on the surviving fibers,
which compels further fibers to fail, etc. This iterative pro-

cess continues until all fibers fail, or an equilibrium situation
with a nonzero bundle strength is reached. Since the number
of fibers is finite, the number of steps, tf, in this sequential
process is finite.

At a force �or elongation� x per surviving fiber the total
force on the bundle is x times the number of intact fibers.
The expected or average force at this stage is therefore

F�x� = Nx�1 − P�x�� . �2�

The maximum Fc of F�x� corresponds to the value xc for
which dF /dx vanishes. Thus

1 − P�xc� − xcp�xc� = 0. �3�

We characterize the state of the bundle as precritical or post-
critical depending upon the stress value �=F /N relative to
the critical stress

�c = Fc/N . �4�

We study the stepwise failure process in the bundle, when a
fixed external load F=N� is applied. Let Nt be the number of
intact fibers at step no. t, with N0=N. We want to determine
how Nt decreases until the degradation process stops. With
Nt intact fibers, an expected number

�NP�N�/Nt�� �5�

of fibers will have thresholds that cannot withstand the load,
and consequently these fibers break immediately. Here �X�
denotes the largest integer not exceeding X. The number of
intact fibers in the next step is therefore
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FIG. 1. The fiber bundle model.
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Nt+1 = N − �NP�N�/Nt�� . �6�

Since N is a large number, the effect of the largest integer
construction is negligible. Consequently iteration �6� is es-
sentially �9�

nt+1 = 1 − P��/nt� �7�

in terms of the ratio

nt =
Nt

N
. �8�

II. RELATION BETWEEN MINIMUM BREAKING RATE
AND COMPLETE COLLAPSE

We will now demonstrate, for three different threshold
distributions, that there is a relation between the minimum of
the breaking rate R�t�=−dnt /dt �treating t as continuous� and
the moment tf when the complete fiber bundle collapses.

A. Uniform distribution

We consider the uniform distribution, P�x�=x for
0�x�1, and assume that the load is postcritical: �= 1

4 +�,
with ��0. Simulations show that the breaking rate has a
minimum at some value t0���, and that for varying � the
minima all occur at a value close to 1

2 when plotted as func-
tion of the scaled variable t / tf �Fig. 2�.

This can be shown analytically. Iteration �7� takes in this
case the form

nt+1 = 1 − �1

4
+ �� 1

nt
. �9�

By direct insertion one verifies that

nt =
1

2
− �� tan�At − B� , �10�

where

A = tan−1�2��� and B = tan−1�1/2��� , �11�

is the solution to Eq. �9� satisfying the initial condition
n0=1. From Eq. �10� follows the breaking rate

R�t� = −
dnt

dt
= ��A cos−2�At − B� . �12�

R�t� has a minimum when

0 =
dR

dt
� sin�2At − 2B� , �13�

which corresponds to

t0 =
B

A
. �14�

When criticality is approached, i.e., when �→0, we have
A→0, and thus t0→�, as expected.

We see from Eq. �10� that nt=0 for

tf = �B + tan−1�1/2����/A = 2B/A . �15�

This is an excellent approximation to the integer value at
which the fiber bundle collapses completely.

Thus with very good approximation we have the simple
connection

tf = 2t0. �16�

When the breaking rate starts increasing we are halfway to
complete collapse.

B. Displaced uniform distribution

Consider a uniform distribution on the interval �xl ,1� as
follows:

p�x� = 	 1

1 − xl
, xl � x � 1

0, otherwise

 . �17�

Thus

P�x� = 	 0, x � xl

x − xl

1 − xl
, xl � x � 1 
 . �18�

Simulations of the breaking rate gives qualitatively the
same behavior as for the uniform distribution �Fig. 3�. For
this distribution Eq. �2� gives
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FIG. 2. The breaking rate R�t�
vs step t �left-hand plot� and vs
the rescaled step variable t / tf

�right-hand plot� for the uniform
threshold distribution for a bundle
of N=107 fibers. Different sym-
bols are used for different excess
stress levels �−�c: 0.001
�circles�, 0.003 �triangles�, 0.005
�squares�, and 0.007 �crosses�.
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� = x�1 − P�x�� =
x�1 − x�
1 − xl

, �19�

with a maximum

�c =
1

4�1 − xl�
. �20�

at x=xc=1 /2.
Iteration �7� takes now the form

nt+1 =
1 − �/nt

1 − xl
. �21�

This can be cast in a familiar form. Introduce

yt = nt�1 − xl� �22�

in Eq. �21� to obtain the iteration for yt as follows:

yt+1 = 1 − ��1 − xl�
1

yt
. �23�

By Eq. �20� the critical value of ��1−xl� is 1/4, so we may
write

��1 − xl� =
1

4
+ � , �24�

where again � is assumed to be small and positive. Then we
are back to the same iteration �Eq. �9�� as for the usual uni-
form distribution

yt =
1

2
− �� tan�tan−1� 1

2
− y0

��
 + t tan−1�2���� �25�

or, since by Eq. �22� and n0=1 we have y0=n0�1−xl�
=1−xl

yt =
1

2
− �� tan�− tan−1��1/2 − xl�/��� + t tan−1�2���� .

�26�

For simplicity write this as

yt =
1

2
− �� tan�at − b� , �27�

with

a = tan−1�2��� and b = tan−1��1/2 − xl�/��� . �28�

The breaking rate �treating t as continuous� is

R�t� = −
dnt

dt
= −

1

1 − xl

dyt

dt
=

��

1 − xl
cos−2�at − b� . �29�

The minimum breaking rate occurs when dR /dt
� sin�2at−2b�=0, i.e., at t0=b /a. For small � we use the
identity

tan−1�1/	� = 
/2 − tan−1�	� , �30�

and obtain approximately for small �

a � 2�� and b � 
/2 − ��/�1/2 − xl� . �31�

Using this, we obtain to leading order

t0 �



4��
. �32�

A good approximation to the collapse point tf is obtained
by selecting the t for which nt or yt vanishes. From Eq. �27�
we see that this occurs for a tf given by

1

2
− �� tan�atf − b� = 0, �33�

i.e.,

tf = �b + tan−1�1/2����/a . �34�

Again, by using Eq. �30� we have for small �

tf =

/2 − ��/�1/2 − xl� + 
/2 − 2��

2��
, �35�

=



2��
�1 + O����� . �36�

Comparing the results for t0 and tf we have once more

tf/t0 = 2 �37�

to leading order.

C. Weibull distribution

Let us finally consider a completely different threshold
distribution, a Weibull distribution of index 5, P�x�=1−e−x5

.
Simulations reveal that the breaking rate has a similar behav-
ior as in the two cases considered above �Fig. 4�.
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FIG. 3. The breaking rate R�t� vs the rescaled step variable t / tf

for displaced uniform threshold distribution �17�. Here xl=0.2 and
N=5�107. Different symbols are used for different excess stress
levels �−�c: 0.001 �circles�, 0.003 �triangles�, 0.005 �squares� and
0.007 �crosses�.
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This case is more complicated, but the analytical ground
work has already been done in �14�. Equation �29� in �14�
shows that for small � the iteration is of the form

nt = nc − b��/C tan�t�C� − c� . �38�

Here nc=e−1/5, C= 5
2 �5e�1/5, b=51/5 and the constant c is de-

termined by the initial condition n0=1

c = tan−1��1 − nc�b−1�C/�� . �39�

From Eq. �38�, the breaking rate equals

R�t� = −
dnt

dt
� cos−2�t�C� − c� . �40�

The breaking rate is a minimum when the cosine takes its
maximum value 1. This is the case when

t0 =
c

�C�
= �C��−1/2tan−1��1 − nc�b−1�C/�� . �41�

The inverse tangent is close to 
 /2 when � is very small.
Hence, for small overloads, we have in excellent approxima-
tion

t0 =



2�C�
. �42�

The collapse point tf is already evaluated in �14�, with the
result

tf �



�C�
�43�

for small � �Eq. �33� in �14��.
Comparison between Eqs. �43� and �42� gives

tf � 2t0, �44�

as for the two previous threshold distributions considered.

III. COMMENTS

We have shown that the complete collapse of fiber
bundles occurs at tf =2t0, where t0 denotes the number of
steps of the breaking process at which the fiber breaking rate
has a minimum. The results are derived for very small over-
loads �. For larger overloads the ratio t0 / tf will not be ex-
actly 0.5, as illustrated in Fig. 5, but nevertheless of the order
of 0.5.

Another interesting observation is that at t= t0 the number
of unbroken fibers in the bundle n�t0� attains the critical
value nc. This can be derived analytically by putting the
value of t0 in expressions �10�, �27�, and �37�, respectively,
for the uniform, the displaced uniform, and the Weibull dis-
tribution. The numerical simulations �Fig. 6� strongly sup-
port this result.
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FIG. 4. The breaking rate R�t� vs. the rescaled step variable t / tf

for a bundle of N=107 fibers having a Weibull threshold distribu-
tion. Different symbols are used for different excess stress levels
�−�c: 0.001 �circles�, 0.003 �triangles�, 0.005 �squares� and 0.007
�crosses�.
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FIG. 5. Simulation results for the ratio t0 / tf vs. ��−�c�−1/2 for
the uniform distribution �circles�, the displaced uniform distribution
with xl=0.2 �squares� and for the Weibull distribution �triangles�.
The graphs are based on 1000 samples with N=107 fibers.
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FIG. 6. Simulation results for n�t0� vs. ��−�c� for the uniform
distribution �circles�, the displaced uniform distribution with
xl=0.2 �squares� and for the Weibull distribution �triangles�. The
graphs are based on 1000 samples with N=107 fibers. The straight
lines represent the critical value nc for these three distributions.
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IV. SUMMARY

In summary, we have considered slightly overloaded fiber
bundles, and investigated how the fiber breaking rate
progresses. It has a minimum after a number of steps t0 of
the degradation process, and we have demonstrated that the
total bundle collapse occurs near 2t0. The demonstration has

been performed for three different distributions of fiber
thresholds, but the result is doubtlessly universal for equal-
load-sharing models. Thus the fact that the breaking rate has
a minimum predicts not only that a global failure will occur,
but also estimates when it will occur. It would be interesting
to see if similar predictions can be made for other models,
like the local-load-sharing model.

�1� Statistical Models for the Fracture of Disordered Materials,
edited by H. J. Herrmann and S. Roux �Elsevier, Amsterdam,
1990�.

�2� B. K. Chakrabarti and L. G. Benguigui, Statistical Physics and
Breakdown in Disordered Systems �Oxford University Press,
Oxford, 1997�.

�3� D. Sornette, Critical Phenomena in Natural Sciences
�Springer-Verlag, Berlin, 2000�.

�4� M. Sahimi Heterogeneous Materials II: Nonlinear and Break-
down Properties �Springer-Verlag, Berlin, 2003�; A. Petri, G.
Paparo, A. Vespignani, A. Alippi, and M. Costantini, Phys.
Rev. Lett. 73, 3423 �1994�.

�5� Modeling Critical and Catastrophic Phenomena in Geo-
science, edited by P. Bhattacharyya and B. K. Chakrabarti
�Springer-Verlag, Berlin, 2006�.

�6� P. C. Hemmer and A. Hansen, ASME Trans. J. Appl. Mech.

59, 909 �1992�.
�7� S. Pradhan, A. Hansen, and P. C. Hemmer, Phys. Rev. Lett.

95, 125501 �2005�; Phys. Rev. E 74, 016122 �2006�.
�8� P. C. Hemmer, A. Hansen, and S. Pradhan, “Rupture processes

in fiber bundle models,” Ref. �5�, pp. 27–55.
�9� S. Pradhan and B. K. Chakrabarti, Phys. Rev. E 65, 016113

�2001�; S. Pradhan, P. Bhattacharyya and B. K. Chakrabarti,
ibid. 66, 016116 �2002�; P. Bhattacharyya, S. Pradhan and B.
K. Chakrabarti, ibid. 67, 046122 �2003�.

�10� F. T. Peirce, J. Text. Inst. 17, 355 �1926�.
�11� H. E. Daniels, Proc. R. Soc. London, Ser. A 183, 405 �1945�.
�12� R. L. Smith, Ann. Probab. 10, 137 �1982�.
�13� S. L. Phoenix and R. L. Smith, Int. J. Solids Struct. 19, 479

�1983�.
�14� S. Pradhan and P. C. Hemmer, Phys. Rev. E 75, 056112

�2007�.

BREAKING-RATE MINIMUM PREDICTS THE COLLAPSE… PHYSICAL REVIEW E 79, 041148 �2009�

041148-5


